Abstract

Optical molecular imaging resulting from Cerenkov radiation has become a motivating topic recently and will potentially open new avenues for the study of small animal imaging. Cerenkov-based optical imaging taken from living animals in vivo has been studied with two-dimensional (2D) planar geometry and three-dimensional (3D) homogeneous mouse model. In this study, we performed 3D Cerenkov-based luminescence tomography (CLT) using a heterogeneous mouse model with an implanted Na(131)I radioactive source, which provided the accurate location for the reconstructed source. Furthermore, single photon emission computed tomography (SPECT) was utilized to verify the results of 3D CLT. We reconstructed the localization and intensity of an embedded radioactive source with various concentrations, and established a quantitative relationship between the radiotracer activity and the reconstructed intensity. The results showed the ability of in vivo CLT to recover the radioactive probe distribution in the heterogeneous mouse model and the potential of a SPECT imaging validation strategy to verify the results of optical molecular tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.