Abstract

In this paper setup, operational problems and a straightforward calibration approach for a cost-effective X-Band radar are presented. The LAWR (Local Area Weather Radar) system is based on conventional ship radar technology which is adapted to register rainfall within a range of about 60 km with a spatial resolution of 500 m per pixel. The instrument offers neither Doppler processing nor vertical scan capabilities but uses 20° wide (vertical) beam. The calibration suffers from an unfavorably distributed and very sparse rain gauge network, heavy clutter contamination of the signal and obstructions by surrounding terrain. A specific scaling approach is developed, that includes satellite data on cloud frequency and distribution, to overcome these limitations. Observed clutter is removed and missing values are replaced by bilinear interpolation of the undisturbed signals. A temporal and spatial bias of the radar signal is corrected using an omni-directional spatial distribution hypothesis. This is possible because of the location of the radar site in the transition zone between high rainfall on the eastern Andean slopes and low rainfall on the leeward side. A further limitation of the system is that the LAWR does not provide information on the measured reflectivity Z but dimensionless counts (8 bit resolution). Calibration is performed assuming a linear relation between radar output and rainfall as recommended by the systems manufacturer. The intercomparison of rain gauge and scatterometer data with calibrated radar rainfall reveals a good performance of the developed calibration approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.