Abstract
Universal quantum computers promise a dramatic speed-up over classical computers but a full-size realization remains challenging. However, intermediate quantum computational models have been proposed that are not universal, but can solve problems that are strongly believed to be classically hard. Aaronson and Arkhipov have shown that interference of single photons in random optical networks can solve the hard problem of sampling the bosonic output distribution which is directly connected to computing matrix permanents. Remarkably, this computation does not require measurement-based interactions or adaptive feed-forward techniques. Here we demonstrate this model of computation using high--quality laser--written integrated quantum networks that were designed to implement random unitary matrix transformations. We experimentally characterize the integrated devices using an in--situ reconstruction method and observe three-photon interference that leads to the boson-sampling output distribution. Our results set a benchmark for quantum computers, that hold the potential of outperforming conventional ones using only a few dozen photons and linear-optical elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.