Abstract

Strengthening of reinforced concrete (RC) members by means of fibre reinforced polymers (FRP) has gained increasing importance in the last few decades. On the other hand the necessity of skilled labour, high costs and particularly the weak response under high temperature conditions represent critical issues for the effective application of this technique. The use of fibre reinforced cementitious matrix (FRCM) composites applied to RC members seems to be a promising technique since it combines cost economy and high performance. Despite the fact that a number of experimental investigations on strengthening of RC elements by means of fibre reinforced polymers (FRP) composites are available in the literature, very little information is available about fibre reinforced cementitious matrix composite (FRCM). Hence, the use of cementitious composites in strengthening of RC structures is strongly limited by the lack of design models, guidelines, and recommendations and by the few available experimental investigations.This work aims to better understand the behaviour of FRCM strengthened RC full-scale elements through experimental tests on precast prestressed double-T beams. In addition to investigating the experimental behaviour of an innovative and promising strengthening system, a further element of novelty of the work is that the tested beams belong to an actual existing industrial building, since the few experimental tests available in the literature are mostly related to small-scale and cast-in-place RC elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call