Abstract

We demonstrate band flip in one-dimensional dielectric photonic lattices presenting numerical and experimental results. In periodic optical lattices supporting leaky Bloch modes, there exists a second stop band where one band edge experiences radiation loss resulting in guided-mode resonance (GMR), while the other band edge becomes a nonleaky bound state in the continuum (BIC). To illustrate the band flip, band structures for two different lattices are provided by calculating zero-order reflectance with respect to wavelength and incident angle. We then provide three photonic lattices, each with a different fill factor, consisting of photoresist gratings on Si3N4 sublayers with glass substrates. The designs are fabricated using laser interferometric lithography. The lattice parameters are characterized and verified with an atomic force microscope. The band transition under fill-factor variation is accomplished experimentally. The measured data are compared to simulation results and show good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.