Abstract

Radiation Control Coatings (RCC) are commonly recognised as paints, in which the long-wave radiation emissivity can be dramatically reduced from 0.9 to below 0.25 due to the dispersion of aluminium flakes inside the base paint. The low emissivity (Low-E) feature makes these materials particularly suitable for reducing the radiative heat exchange in building components and worthy of being used in roof attics, pipes, heat storage tank, etc. However, in the last few years, the application to the indoor surfaces of the building envelope has become quite popular, because the reflective properties can be exploited to increase the thermal comfort and reduce the winter heat losses. Except for aluminium based paint, that, for their strong metallized effect, suffer from some aesthetical limitation, the claimed performance of most of the other commercially available reflective paints are not universally recognized and in most of the cases their properties are misled, referring to visible and short wave infrared reflectivity. In this paper, a new methodology for assessing the long-wave thermal emissivity by using a heat flow meter apparatus is proposed. Moreover, the thermal emissivity of different paint mixtures with reduced metallised effect is assessed. The results allow for affirming that paints with acceptable aesthetic value (limited metallized effect) can reach an emissivity of ~0.60 instead of a typical emissivity of paint between 0.85–0.90. Furthermore, the partition wall of a double climatic chamber apparatus was painted with different low-E paints to evaluate whether an increase of the indoor operative temperature would have been observed. A slight, but not negligible, increase was shown of up to 0.3 °C and 0.6 °C for paint with an emissivity of ~0.6 and ~0.4, respectively.

Highlights

  • The effect of reflective thermal insulation was discovered in the middle of the 19th century byJ.C.E

  • The influence of low emissivity coatings that were applied to the interior side of one external

  • The influence of low emissivity coatings that were applied to the interior side of one external wall turned out a slight, but not marginal contribution for the reduction of the heat losses through the wall turned out a slight, but not marginal contribution for the reduction of the heat losses through external walls (Figure 11) that can be summarised, as follows: the external walls (Figure 11) that can be summarised, as follows:

Read more

Summary

Introduction

The effect of reflective thermal insulation was discovered in the middle of the 19th century by. He experimentally observed that a multilayer structure of thin metal foil facing airspaces presents good insulation properties. The commercial development of this technology started in the early 1900s with the patents that were published by E.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.