Abstract
Three different approaches to partitioning mixed-mode delaminations are assessed for their ability to predict the interfacial fracture toughness of generally laminated composite beams. This is by using published data from some thorough and comprehensive experimental tests carried out by independent researchers (Davidson et al., 2000, 2006). Wang and Harvey’s (2012) Euler beam partition theory is found to give very accurate prediction of interfacial fracture toughness for arbitrary layups, thickness ratios and loading conditions. Davidson et al.’s (2000) non-singular-field partition theory has excellent agreement with Wang and Harvey’s Euler beam partition theory for unidirectional layups. Although Davidson et al.’s partition theory predicts the interfacial fracture toughness of multidirectional layups reasonably well, overall Wang and Harvey’s Euler beam partition theory is found to give better predictions. In general, the singular-field approach based on 2D elasticity and the finite element method gives poor predictions of fracture toughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.