Abstract

A semi-interlocking masonry (SIM) building system has been developed in the Centre for Infrastructure Performance and Reliability at The University of Newcastle, Australia for seismically vulnerable regions as an alternative to traditional masonry panels. This innovative masonry building system consists of mortar-less masonry panels with multiple sliding bed joints made of semi-interlocking units. The study presented herein focused on the experimental investigation of large cyclic in-plane shear behaviour of three different types of panels: 1) panel with an open gap between the steel frame and the top of the panel; 2) panel with foam in the gap; 3) panel with grout in the gap. This paper reports the results of this testing program with mechanically interlocking units with main focus on the force-displacement relationship and the energy dissipation capacity of panels. The structural performance of the SIM panels is also analysed, and potential displacement patterns are identified under large displacement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call