Abstract

Three phase inverters with switching frequencies above 100 kHz have recently become feasible thanks to the significant progress made in wide band gap (WBG) semiconductor technology. The main drivers behind the intense research and development of these ultrahigh switching frequency pulsewidth modulation (PWM) inverters are the extraordinary gravimetric and volumetric power densities that can be achieved. On the other hand, not as much attention has been devoted to the loads that these inverters supply, quite frequently consisting in ac motors. The impact of sub-MHz PWM and of the associated tens of nanoseconds range switching transients on motor terminal overvoltage, common mode currents, and losses are still to be discussed exhaustively. The authors have thus decided to investigate what happens to induction motors (IM) supplied by inverters having switching frequencies up to 350 kHz. After an introduction on WBG semiconductor devices, the article presents some interesting experimental observations conducted on a 1.1 kW four-pole IM fed by a silicon carbide (SiC) inverter. Further insight is provided by tests on a laminated steel toroid, supplied by a single-phase full bridge SiC inverter. Discussions on the experimental results highlight the previously unreported impact of common mode losses, which become a predominant part of the PWM harmonic losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call