Abstract
Abstract. Positioning techniques are fundamental in many automation tasks with several applications. In GNSS-denied environments like in dense forests, other alternatives are required, such as inertial and visual navigation. However, Inertial Measurement Units (IMUs) data, mainly those from microelectromechanical-system (MEMS), are noisy, which affects the orientation estimation. MEMS IMUs have been employed in mobile laser scanning systems due to their compact design and low-cost solutions for short-term navigation. In this paper, we have compared three IMU processing techniques freely available: MAH (Mahony et al., 2009), MAD (Madgwick et al., 2011) and DCM (Hyyti and Visala, 2015). These techniques implemented different approaches to estimate the attitude. They were experimentally assessed with data from a backpack mobile laser scanning system, which is composed of an OS0-128 Ouster LiDAR equipped with an internal IMU. We have used data from a 5-second trajectory segment aiming to evaluate the attitude and position estimation for a local path. The results showed that the DCM algorithm maintained a consistent velocity for 5 seconds, achieving a positional error of 1.4 m, 0.06 m, and 1.05 m along the X-, Y- and Z-axis, respectively. In contrast, MAD and MAH showed a position error over 20 m, 7 m and 3 m along the X-, Y- and Z-axis, respectively, which was affected by the velocity drift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.