Abstract

Background: Carbon fibre reinforced epoxy (CFRP) is susceptible to impact damage which could resulted in reduction of the mechanical properties. This paper studies the architecture of barely visible impact damage (BVID) to comprehend the extent of damage on quasi-isotropic CFRP laminates of varying thickness (i.e. 16, 24 and 32-ply laminates of 3, 4 and 5 mm respectively). Methods: Quasi-static indentation is chosen to produce BVID on CFRP laminates, followed by using non-destruction evaluation method, namely conventional contact-type ultrasonic testing (UT) and C-mode scanning acoustic microscopy (C-SAM) method. Results: The findings revealed (1) the size and shapes of the BVID on CFRP laminates, (2) no damage found at the point of damage, and (3) the bridging between the point of impact to the outer damaged diameter due to the consequence of diverse orientation of carbon fibre strips which exhibit excellent mechanical properties before structural failure. Conclusions: The results concluded that the UT and C-SAM method can identify both the pristine region and the internal damaged structures in CFRP laminates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call