Abstract

In this work, hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure. The plasma-catalyst hybrid reformer which includes both plasma and catalyst reactors is designed. A spark discharge is used as a non-equilibrium plasma source, and it is used to ionize the mixture of DME and air. The performances of the reformer are characterized experimentally in terms of gas concentrations, hydrogen yield, DME conversion ratio, and specific energy consumption. The effects of discharge frequency, reaction temperature, air-to-DME ratio and space velocity are investigated. The experimental results show that the plasma-catalyst hybrid reformer enhances hydrogen yield when reaction temperature drops below 620 °C. At 450 °C, hydrogen yield of hybrid reforming is almost three times that of catalyst reforming. When space velocity is 510 h−1, hydrogen yield is 67.7%, and specific energy consumption is 12.2 kJ/L-H2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call