Abstract

The Modular Multilevel Converter (MMC) has been widely used in high-power applications owing to its inherent advantages, including scalability, modularity, high-power density, and fault tolerance. MMCs have recently been used in Low-Frequency Alternating Current (LFAC) transmission, particularly in the integration of offshore wind power with onshore grids. However, LFAC applications produce significant voltage oscillations in floating capacitor voltages within the MMC. Early research efforts have successfully established and validated decoupled control strategies for LFAC-based MMC systems. However, validations are usually based on simulations or small-scale prototypes equipped with limited power cells. Consequently, this paper presents a decentralized voltage control strategy based on Nearest Level Control for an MMC-based LFAC system. Experimental results obtained with a 120-cell MMC prototype are presented to validate the effectiveness and operation of the MMC in LFAC applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.