Abstract

Heterochronies, temporal changes in ancestral ontogeny, are proposed to play the major role in microand macroevolutionary transformations of lower vertebrates. However, the evolutionary role of heterochronies often remains hypothetical, not verified experimentally. In the present paper, participation of heterochronies in (1) the origin of lacustrine fish species flocks, (2) the diversification of skeletal morphology in teleosts, and (3) the skull evolution in amphibians is experimentally verified. For this purpose, the temporal parameters of ontogeny were directly changed via artificial alterations of the thyroid hormones level in different representatives of lower vertebrates. The data obtained indicate that heterochronies are among the main mechanisms responsible for the current morphological diversity displayed by lower vertebrates at different phylogenetic levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.