Abstract

In this paper, an experimental device designed and developedto estimate thermal conditions at the Glass / piston contact interface is presented. This deviceis made of two parts: the upper part contains the piston made of metal and a heating device to raise the temperature of the piston up to 500 °C. The lower part is composed of a lead crucible and a glass sample. The assembly is provided with a heating system, an induction furnace of 6 kW for heating the glass up to 950 °C.The developed experimental procedure has permitted in a previous published study to estimate the Thermal Contact ResistanceTCR using the inverse technique developed by Beck [1]. The semi-transparent character of the glass has been taken into account by an additional radiative heat flux and an equivalent thermal conductivity. After the set-up tests, reproducibility experiments for a specific contact pressure have been carried outwith a maximum dispersion that doesn’t exceed 6%. Then, experiments under different conditions for a specific glass forming process regarding the application (Packaging, Buildings and Automobile) were carried out. The objective is to determine, experimentallyfor each application,the typical conditions capable to minimize the glass temperature loss during the glass forming process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call