Abstract

This article includes the phases of conceptualization and validation of a picosatellite prototype named Simple-2 for remote sensing activities using COTS (Commercial-Off-The-Shelf) components and the modular design methodology. To evaluate its performance and ensure the precision and accuracy of the measurements made by the satellite prototype, a methodology was designed and implemented for the characterization and qualification of CanSats (soda can satellites) through statistical tests and techniques of DoE (Design of Experiments) based on CubeSat aerospace standards and regulations, in the absence of official test procedures for these kinds of satellite form factor. For the above, two experimental units were used, and all the performance variables of the different satellite subsystems were discriminated. For the above, two experimental units were used, and all the performance variables of the different satellite subsystems were discriminated against. These were grouped according to the dependence of the treatments formulated in thermal and dynamic variables. For the tests of the first variables, a one-factor design was established using dependent samples on each of the treatments. Then, hypothesis tests were performed for equality of medians, using nonparametric analysis of the Kruskal-Wallis variance. Additionally, multivariate analysis of variance was carried out for nonparametric samples (nonparametric multivariate tests), and the application of post hoc multiple-range tests to identify the treatments that presented significant differences within a margin of acceptability. To know the dynamic response and ensure the structural integrity of the satellite module, shock, oscillation, and sinusoidal tests were applied through a shaker. Having applied the experimental methodology to the different units, the results of a real experiment are illustrated in which a high-altitude balloon was used through the application of nonparametric regression methods. This experiment’s interest measured thermodynamic variables and the concentration of pollutants in the stratosphere to corroborate the operating ranges planned in the above experiments using on-flight conditions and estimate the TLR (technology readiness level) of future prototypes.

Highlights

  • CanSat is a picosatellite form factor (0.1-1 kg satellite classification by mass criterion)

  • Between 3 and 70 captures were made in each test to carry out postprocessing of the data to generate a better statistical representation of the dynamic behavior

  • With the development of this research, an experimental methodological approach was proposed to be reproduced with small satellites in the pico- (0.1-1 kg) and femto(0.01-0.09 kg) form factor in evaluating the feasibility of using COTS components in a space project to reduce costs considerably, as well as to validate the modularity of the internal subsystems to allow reuse in the future missions

Read more

Summary

Introduction

CanSat is a picosatellite form factor (0.1-1 kg satellite classification by mass criterion). The universities have been closely connected to these processes and have taken advantage of the technological advances in electronics, new materials, and more precise sensors to create smaller and technically simpler satellites with lower launch and operational costs. These resources enrich student training programs, stimulate their interest in a multidisciplinary technical environment for problem-solving, and have the necessary bases to face risks, with the extensive and necessary support from mentors, partners in industry, and institutions, among others [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call