Abstract

Bearing and planetary gearbox are important for rotating machinery. However, their faults often cause the stop of the machinery or even fatal casualties. Vibration signal contains the status information of the rotating machinery, which is covered by the strong noise. Stochastic resonance (SR) is a noise-benefit phenomenon, which can detect the weak fault characteristic signal from the vibration signal under strong noise. To detect the fault of bearing or planetary gearbox effectively, SR based on Wood–Saxon potential which only has on potential well called WSSR is studied, and a novel fault diagnosis strategy based on WSSR is proposed. The effect of every WSSR parameter, anti-noise capability of WSSR under different noise intensities and optimal frequency response of WSSR under different driving frequency are analyzed by simulation. To verify the effectiveness of our proposed fault diagnosis strategy based on WSSR, three preset fault tests of bearing and two of planetary gearbox are carried out. Bi-stable SR is also used for comparison. The results show that our proposed fault diagnosis strategy is more effective for the fault detection of bearing and planetary gearbox than bi-stable SR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call