Abstract

Silicate inclusions are widespread in natural diamonds, which also may contain rare inclusions of native iron. This suggests that some natural diamonds crystallized in metal-silicate-carbon systems. We experimentally studied the crystallization of diamond and silicate phases from the starting composition Fe0.36Ni0.64 + silicate glass + graphite and calculated the Fe mole fractions of the silicate phases crystallizing under these conditions. The silicates synthesized together with diamond had low Fe mole fractions [Fe/(Fe + Mg + Ca)] in spite of strong Fe predominance in the system. The Fe mole fractions of the silicates decreased in the sequence garnet-pyroxene-olivine, which is consistent with the results of our thermodynamic calculations. The Fe mole fraction of silicates under various redox conditions under which metal-carbon melts are stable drastically decreases with decreasing fo2. The low Fe mole fractions of silicate inclusions in diamond from the Earth’s mantle can be explained by the highly reducing crystallization conditions, under which Fe was concentrated as a metallic phase of the magmatic melts and could be only insignificantly incorporated in the structures of silicates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.