Abstract
Involving a particularly strong carbide-former metallic element, the tantalum carbides are potentially very stable at elevated temperatures in term of volume fraction and morphology. The TaC phase represents a major strengthening way to allow cast chromium-rich superalloys resisting mechanical stresses at elevated temperatures. They are exploited in recent high performance cobalt-based superalloys but seemingly not in nickel-chromium refractory alloys. Earlier studies showed that the stability of TaC in Ni-Cr alloys is not so good as in the Co-Cr ones, and they evidenced that chromium carbides may compete with TaC in the formation of the carbides population. A possible way to optimize the presence of TaC in Ni-Cr alloy may consist in rating the chromium content to an ideal value but preliminary knowledge about the TaC dependence on the Cr content is compulsory. The aim of this work is precisely the investigation of the effect of the content in chromium on the appearance and stability of the TaC phase in Ni-Cr alloys, by the means of thermodynamic calculations and real experiments in parallel. A global system Ni(bal.)-xCr-0.4C-6Ta compositions (with x varying from 0 to 50 wt%) was chosen. Thermodynamic calculations were performed to know the theoretic metallurgical states inside the considered x range. These theoretic results being dependent on the suitability of the used database, real experiments of verifications were also carried out for a selection of six alloys (x = 0, 10, 20, 30, 40 and 50 wt%). The alloys prepared by respecting these compositions were cast and isothermally exposed at high temperature (1400 and 1510 K), then subjected to metallographic characterization. For the used database the calculated results showed that no TaC should never appear whatever their Cr content, while TaC were really observed in the as-cast and aged versions of the alloys containing 20 wt%Cr and more, but never alone since chromium carbides were systematically also present. When the Cr content in the alloy is too low, the TaC are rare or even no present. This allowed concluding first that the database used for the calculations needs serious improvements, followed by tests with, as first criteria of quality, a good correspondence with the present experimental results. Second, the presence of Cr in quantity high enough is surprisingly compulsory to obtain TaC carbides in quantity high enough, but it is no possible to avoid the appearance of chromium carbides. Obviously, other ways than Cr adjustments must be found to obtain TaC in nickel-based alloys as the single carbide phase and in quantity high enough to achieve high mechanical properties at high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.