Abstract

Abstract Cyclic voltammetry, 1H nuclear magnetic resonance and quantum chemistry calculations were applied to explore the hydrogen bond interactions between ascorbic acid (AA) and glycine. The experimental results demonstrate the existence of hydrogen bonds in AA-glycine system, which has a significant effect on the oxidation peak potentials and currents of AA and the chemical shifts of glycine. The formation of hydrogen bonds between AA and glycine were further confirmed by the density functional theory, quantum theory of atoms in molecules and natural bond orbital analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call