Abstract

The photoionization of methyl methacrylate and dissociation of its cation have been investigated by tunable vacuum ultraviolet synchrotron radiation coupled with time-of-flight mass spectrometer in the photon energy region of 9.0–15.5 eV. The ionization energy of methyl methacrylate and the appearance energies (AEs) for major fragments, C5H6O+, C4H5O+, C3H4O+, C3H3O+ and are determined to be 9.76, 10.30, 10.66, 10.51, 11.17, 10.51, 10.74, 12.88, 12.73, 12.52, and 12.82 eV, respectively, by measurement of the photoionization efficiency curves. Possible formation pathways of the major fragments are proposed based on comparison of experimental AEs and energies predicted by ab initio G3B3 calculations. Transition states and intermediates involved in the dissociation channels are also located. The majority of the proposed channels occur through isomerization prior to dissociation. Hydrogen shift and ring closing/opening are found to be the dominant processes during photofragmentaion of methyl methacrylate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.