Abstract
In this work, both experimental and theoretical study on the FT-IR and Raman spectra as well as 1H NMR and 13C NMR chemical shifts of 4,4′-dibromodiphenyl ether have been carried out. The optimized geometry was obtained by using both HF and density functional B3LYP method with the 6-31G(d) and 6-311+G(d, p) basis sets. The calculated bond lengths and dihedral angles for both methods on 6-31G(d) level show the best agreement with the experimental data, while the dihedral angles of C 1′ O C 1 C 6 and C 1′ O C 1 C 2, critical geometry parameters for conformers in the ground state, indicates significant deviation of HF results from the experimental information. The harmonic vibration frequencies and intensities in IR and Raman spectra and chemical shifts of the molecule were calculated on the B3LYP/6-31G(d) and B3LYP/6-311+G(d, p) levels. The scaled theoretical vibration frequencies present good agreement with the experimental values. The larger basis set makes no significant improvement in the accuracy of the vibration frequencies. Besides, chemical shifts of hydrogen and carbon computed on B3LYP/6-31G(d) level agree well with the observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.