Abstract

We present experimental results of output power bistability in a vertical-cavity surface-emitting laser under optical injection induced by frequency detuning or power variation of the master laser. An ultra-wide hysteresis cycle of 3.7 nm (473.3 GHz) is achieved through frequency detuning, which is more than 11 times wider than that achieved in the state-of-the-art (37 GHz). Furthermore, the width of injection power induced hysteresis cycle we achieved is as large as 7.3 dB. We theoretically analyzed the hysteresis cycles based on standard optical injection locking rate equations including the interference effect of master laser reflection and found excellent agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.