Abstract

This study investigated the vapor condensation characteristics in an inclined pipe under natural convection conditions experimentally and numerically. The inclined blind-end concentric pipe had an inner diameter of 134 mm and a length of 680 mm, which is cooled by cooling water. The experimental pressure range was 0.2–0.6 MPa, and the dimensionless mass number range was 0.44 to 202. The fog formation phenomenon was observed in the experiment. An empirical correlation with a broad range of dimensionless mass numbers was developed based on the experimental results to predict the heat transfer coefficient (HTC). When the air mass fraction was large and the HTC was low, the effect of fog formation on the HTC had to be considered. In the numerical simulation, this study aimed to develop an HTC prediction model with broader applicability. Based on the diffusion boundary layer theory, this study improved Peterson's model by adding fog effect and wave effect. The model showed high adaptability to this experiment and other experiments in the natural convection condensation database. The improved model performed significantly better, with 96% of the data falling within an error zone of 30%. The wide range of dimensionless mass number test data might complement the natural convection condensation experimental database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.