Abstract
The flow of a polypropylene in a self-wiping corotating twin-screw extruder was characterized by measuring the pressure, temperature, and residence time along the screw profile. The influence of the operating conditions (feed rate, screw speed, barrel temperature) and screw profile was studied. Flow modeling was performed using the Ludovic© software and measured and calculated pressure, temperature, residence time, and energy consumption were compared. The values of the temperature close to the melting zone were overestimated by the model, which considers instantaneous melting upon the first restrictive screw element. If the program assumes that melting occurs at the screw location identified experimentally, a correct description of the temperatures along the screw profile is produced. The influence of the processing conditions (feed rate, screw speed, barrel temperature, screw profile) is well described by the model. These results put in evidence the importance of including an adequate melting model in the modeling of the twin-screw extrusion process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1419–1430, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.