Abstract

The Raman and IR spectra of free 12-crown-4 (12c4) were measured in the solid, liquid, and solution phases. In the three phases, IR active modes were Raman inactive and IR inactive modes were Raman active. According to the exclusion rule, this is consistent with a conformation with a center of inversion. This indicates that 12c4 in the above-mentioned three phases exists in the C(i) conformation. Harmonic force fields were calculated for five of the lowest energy conformations of 12c4 of C(i), S(4), C(4), C(2), and C(s) symmetries at the corresponding optimized geometries at the B3LYP/6-31+G level. The five force fields were scaled using a six-scale-factor scaling scheme. The scale factors were varied to minimize the difference between the calculated and experimental fundamental frequencies, except that corresponding to the C-H stretching mode that was held fixed. The root-mean-square (rms) deviation of the experimental to the calculated vibrational frequencies was 6.2, 12.0, 10.8, 13.2, and 13.5 cm(-1), for C(i)(), S(4), C(4), C(2), and C(s) conformations, respectively. This supports the above conclusion that 12c4 in the solid, liquid, and considered solution phases exists in the C(i) conformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.