Abstract

Different [AuL]+ fragments (L = tertiary phosphines, ylides, or NHC carbene) have been tested under mild conditions as suitable catalysts for the transformation of terminal or internal alkynes into the corresponding cyclic acetals upon reaction with ethylene glycol. We have obtained a moderate to negligible activity when using tertiary phosphines or nonstabilized ylides as ligands. However, a very high catalytic activity is reached when the IPr N-heterocyclic carbene ligand is used. We have analyzed the key stages in this type of gold-catalyzed reaction, namely, (i) electronic activation (alkynophilicity); (ii) protodeauration; and (iii) decomposition of the gold catalyst. The first two stages have been analyzed through DFT computation of the minimum-energy reaction pathways employing different catalysts. An explanation of the catalysts’ stability has been proposed through the analysis of in situ time-resolved nuclear magnetic resonance spectra of the catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call