Abstract

In the present study, a novel in situ particle sizing approach is proposed and used to measure the characteristic timescales of micron-sized iron particle combustion under low-oxygen (10–17vol%) dilution conditions. The particle size is determined by probing the light emission intensity of a burning particle during melting, which is proportional to the cross-section area of the particle projected to the camera. Detailed descriptions of the calibration, validation, and characterization of the experimental method are elaborated. With systematic measurements, we obtain one-to-one correlations between combustion timescales and single particle diameters at various diluted oxygen concentrations. Furthermore, we formally derive a theoretical model for heterogeneous combustion of growing (iron) particles in the diffusion-limited regime. The model suggests that the diffusion-limited burn time scales with the initial particle diameter squared (i.e., a new, generalized d2-law). Owing to accounting for the particle growth, the newly derived model suggests a significantly (1.66 times) shorter combustion duration compared to the conventional d2-law for shrinking particle combustion. It turns out that the new model agrees well with the experiment. This agreement also suggests that under low-oxygen dilution conditions, the combustion regime of iron particles during the intensive burning stage (i.e., from ignition to the peak particle temperature) is limited by external oxygen diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call