Abstract
Flames propagating in tubes open at the ignition end typically show two different kinds of thermo-acoustic instability namely, primary and secondary. Secondary acoustic instability is accompanied by parametric instability of flame front during which, cellular structures on the flame surface oscillate with half the acoustic frequency of excitation. The growth rates associated with secondary acoustic instability of flame structure are higher compared to primary instability of flames leading to very high peak pressures. In this work, we present experimental and theoretical study on parametric instability of downward propagating C2H4/O2/CO2 flames at two different Le of 1.0 and 0.8. Lower Le mixtures are found to be more unstable. Parametric instability of higher acoustic modes is reported for the first time for gaseous fuels. Higher modes of parametric instability transitioned successively to lower modes as the flame propagated downward. Growth rate of parametric instability is measured in experiments. Theoretical prediction of growth rate is done based on velocity coupling mechanism. Theoretical calculations provide good approximation of growth rates and its variation with frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.