Abstract

The unevenly distributed Lorentz–Gaussian beams are difficult to reproduce in practice, because they require modulation in both amplitude and phase terms. Here, a new linearly polarized Lorentz–Gauss beam modulated by a helical axicon (LGB-HA) is calculated, and the two various experimental generation methods of this beam, Fourier transform method (FTM) and complex-amplitude modulation (CAM) method, are depicted. Compared with the FTM, the CAM method can modulate the phase and amplitude simultaneously by only one reflection-type phase-only liquid crystal spatial light modulator. Both of the methods are coincident with the numerical results. Yet CAM is simpler, efficient, and has a higher degree of conformance through data comparison. In addition, considering some barriers exist in shaping and reappearing the complicated Lorentz–Gauss beam with heterogeneous distribution, the evolution regularities of the beams with different parameters (axial parameter, topological charge, and phase factor) were also implemented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call