Abstract

The second harmonic generation behavior of a contacting interface has been evaluated experimentally and discussed theoretically in the light of a nonlinear interface model. Two aluminum blocks were mated together to constitute a contact interface and subjected to normal compressive loading. A 5 MHz longitudinal toneburst wave was sent to the interface in the normal direction and the transmitted wave was recorded, from which the fundamental and the second harmonic components were extracted. A nonlinearity parameter was obtained as the ratio of the second harmonic amplitude to the squared fundamental amplitude. From the measured contact pressure dependence of the transmitted fundamental amplitude, the linear and the second-order interfacial stiffness parameters were identified, which enabled the evaluation of the nonlinearity parameter based on the theoretical model. The theoretical contact pressure dependence of the nonlinearity parameter was found to be in good qualitative agreement with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call