Abstract

In the context of a project aiming at the replacement of the 3-substituted β-lactam ring in classical β-lactam antibiotics by an N(3)-acyl-1,3-diazetidinone moiety, we have investigated the reaction of isocyanates with imines derived from allyl glycinate and differently substituted propionaldehydes. Imines of aromatic aldehydes with anilines have been reported to react with acyl isocyanates to give 1,3-diazetidinones or 2,3-dihydro-4H-1,3,5-oxadiazin-4-ones, via [2+2] or [4+2] cycloaddition, respectively. However, neither of these products was formed with imines derived from allyl glycinate and 2-(mono)methyl propionaldehydes. α,α-Dimethylation of the imine enabled the [4+2] cycloaddition pathway, but the desired 1,3-diazetidinone products were not observed. Surprisingly, the imines obtained from thioesters of 2,2-dimethyl 3-oxo propionic acid reacted with aryl isocyanates or with benzyl isocyanate to give 5,5-dimethyl-2,4-dioxo-6-(aryl-/alkylthio)tetrahydropyrimidines, via thiol displacement and re-addition to a putative six-membered iminium intermediate. These experimental results obtained for the reactions could be rationalized by DFT calculations. In addition, we have shown that N(3)-acyl-1,3-diazetidinone and 2,3-dihydro-4H-1,3,5-oxadiazin-4-one products can be distinguished based on experimental IR data in combination with theoretical reference spectra employing the IR spectra alignment (IRSA) algorithm. This discrimination was not possible by means of 1 H, 13 C, or 15 N NMR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.