Abstract

The kinetics of the substitution reactions between bifunctional Au(III) complexes, [AuCl2(bipy)]+, [AuCl2(dach)]+ and [AuCl2(en)]+ (bipy = 2,2″-bipyridine, dach = (1 R,2R)-1,2-diaminocyclohexane, en = ethylenediamine), with biologically relevant ligands such as glutathione (GSH), L-methionine (L-Met) and L-cysteine (L-Cys) is determined. All kinetic studies are performed in 25 mM Hepes buffer (pH = 7.2) in the presence of NaCl (25 mM) to prevent hydrolysis of the complexes. The reactions were followed under pseudo-first-order conditions using stopped-flow UV–Vis spectrophotometry at determined working wavelengths at three different temperatures (288.2, 298.1, and 309.8 K). DFT theoretical approach was applied to calculate thermodynamic and kinetic parameters that determined an operative mechanism of substitution reactions for all complexes and L-Cys as a selected model substituent. The obtained kinetic data showed that all complexes have similar reactivity; [AuCl2(bipy)]+ is the most reactive while [AuCl2(en)]+ is the least reactive. The second step of the substitution reaction is much faster than the first. The reactivity of the studied nucleophiles decreases in order L-Met > L-Cys > GSH. According to the values of the activation parameters determined experimentally and theoretically, all substitutions follow an associative model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.