Abstract

Electronic spectra for BeC have been recorded over the range 30,500-40,000 cm(-1). Laser ablation and jet-cooling techniques were used to obtain rotationally resolved data. The vibronic structure consists of a series of bands with erratic energy spacings. Two-color photoionization threshold measurements were used to show that the majority of these features originated from the ground state zero-point level. The rotational structures were consistent with the bands of (3)Π-X(3)Σ(-) transitions. Theoretical calculations indicate that the erratic vibronic structure results from strong interactions between the four lowest energy (3)Π states. Adiabatic potential energy curves were obtained from dynamically weighted MRCI calculations. Diabatic potentials and coupling matrix elements were then reconstructed from these results, and used to compute the vibronic energy levels for the four interacting (3)Π states. The predictions were sufficiently close to the observed structure to permit partial assignment of the spectra. Bands originating from the low-lying 1(5)Σ(-) state were also identified, yielding a (5)Σ(-) to X(3)Σ(-) energy interval of 2302 ± 80 cm(-1) and molecular constants for the 1(5)Π state. The ionization energy of BeC was found to be 70,779(40) cm(-1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call