Abstract

Positively and negatively charged molecules, endothelia, and cells play important roles in biological salted aqueous media. This work aimed at studying artificial polyelectrolyte complexes in terms of formation and stability in the context of the increasing interest for the use of polyelectrolyte systems in drug delivery or as polyelectrolyte complexes or polyplexes for gene transfection. The effect of salt concentration on model polyelectrolyte complexes was studied both experimentally and from a theoretical viewpoint. The critical salt concentration at which phase separation appeared when multifunctional polyanions, namely poly(l-lysine citramide) and poly(l-lysine citramide imide) were mixed with poly(l-lysine) showed that salt concentration, degree of polymerization and charge density conditioned the formation and the stability of corresponding polyelectrolyte complexes. Data agreed well with the trends indicated by the theoretical approach and they are discussed in comparison with the case of nonviral transfection using polyplexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.