Abstract
Transition metal dichalcogenides (TMDs), especially in two-dimensional (2D) form, exhibit many properties desirable for device applications. However, device performance can be hindered by the presence of defects. Here, we combine state of the art experimental and computational approaches to determine formation energies and charge transition levels of defects in bulk and 2D MX2 (M = Mo or W; X = S, Se, or Te). We perform deep level transient spectroscopy (DLTS) measurements of bulk TMDs. Simultaneously, we calculate formation energies and defect levels of all native point defects, which enable identification of levels observed in DLTS and extend our calculations to vacancies in 2D TMDs, for which DLTS is challenging. We find that reduction of dimensionality of TMDs to 2D has a significant impact on defect properties. This finding may explain differences in optical properties of 2D TMDs synthesized with different methods and lays foundation for future developments of more efficient TMD-based devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.