Abstract

Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a square of side 6.35 mm. Experimental data were obtained with mists of both methanol and water. Surface-averaged heat fluxes as high as 60 W/cm2 could be dissipated with the methanol/air mist while maintaining the target surface below 70°C. With the water/air mist, a heat flux of 60 W/cm2 could be dissipated with the target surface at 80°C. Major trends in the data and model predictions have been explained in terms of the underlying hydrodynamic and heat transfer phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call