Abstract

The adsorption behavior and the inhibition performance of Eosin Y Dye for carbon steel corrosion in 1 M perchloric acid solution have been carried using weight loss and scanning electron micrograph (SEM) techniques as well theoretical calculations based on density functional theory (DFT). The studied inhibitor concentrations were between 5´10-5 M and 5´10-3 M. Results obtained revealed that Eosin Y is an effective inhibitor and its inhibition efficiency increases with increasing concentration to attain 96.91% at 5´10-3 M at 30 °C. Thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy were obtained from experimental data of the temperature studies of the inhibition process at five temperatures ranging from 20 to 60 °C. It was found that the adsorption of Eosin Y could prevent steel from weight loss and the adsorption accorded with the Langmuir adsorption isotherm. The free energy of adsorption showed that the corrosion inhibition takes place by spontaneous physicochemical adsorption of inhibitor molecules on the carbon steel surface. SEM and DFT studies confirm the adsorption of Eosin Y on carbon steel surface. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.