Abstract
AbstractCinnamyl alcohol (CA) was added to the rolling oil of copper foils as a novel corrosion inhibitor, and its anticorrosion performance and mechanism were studied using potentiodynamic polarization and electrochemical impedance spectroscopy. Microstructure and chemical composition of the copper electrode surface were analyzed by scanning electron microscopy, energy‐dispersive spectroscopy, and X‐ray photoelectron spectroscopy. The results showed that CA acted as a mixed‐type inhibitor, and the maximum inhibition efficiency of 87.7% was achieved at 2.4 mM. Moreover, a protective film was formed on the copper surface, which attributed to the C–OH groups in the CA molecule. The absorption of CA on the copper surface was physisorption, which conformed to Langmuir adsorption isotherm, with a standard adsorption free energy of −11.38 kJ/mol. In the presence of CA, some flaky corrosion products changed into granular corrosion products. The synergistic effect of the granular corrosion products (copper chloride hydroxide) and the CA film further decreased the corrosion rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.