Abstract

An experimental and theoretical study of a high repetition rate laser source operating on a novel mode-locking technique is presented. This technique relies on the fast saturation and recovery of a semiconductor optical amplifier induced by an external optical pulse and has been used to obtain 4.3 ps pulses at 20 GHz. A complete mathematical model of the fiber ring laser is presented describing the mode-locking process in the laser oscillator and providing solutions for the steady-state mode-locked pulse profile. The critical parameters of the system are defined and analyzed and their impact on the formation of the mode-locked pulses is examined. The comparison between the theoretical results and the experimental data reveals very good agreement and has allowed the optimization of the performance of the system in terms of its critical parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.