Abstract

The random coupling-length basis was used in the numerical simulation of single-mode fibers (SMF's) with the coarse step method. We show that a single set of coupling lengths, angles and phases accounts for both, the Maxwellian statistics and the nonperiodical differential group delay spectral dependence in agreement with experimental observations. An SMF and a polarization mode dispersion (PR ID) emulator were both measured and simulated. The comparison between the experimental results and numerical simulations shows that the random coupling-lengths mathematical model and the emulator device provide good descriptions either for the first-order PMD statistics or second-order PMD, being powerful tools for the simulation of signal distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.