Abstract

Perforated arches with cellular openings are widely used as roof beams in various buildings due to the functional and appearance requirements of architecture. Perforated arches under a central concentrated load may suffer from out-of-plane buckling when the load reaches to a critical value. This paper presents the analytical solution based on the energy method to predict the critical load of perforated arches under a central concentrated load. Experimental tests and finite element analyses are also carried out for perforated circular aluminum arch specimens to validate the present analytical solution. Good agreement between the analytical, experimental, and numerical results is demonstrated. The present results show that the size of web openings and the slenderness of the arch could affect the out-of-plane buckling behavior of perforated arches significantly. The arch with larger web perforations or larger slenderness ratio has the lower critical load of out-of-plane buckling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call