Abstract
The trinuclear copper(II) compounds [Cu3(μ3-OH)(GL1)3](ClO4)2 (1–4) and [Cu3(μ3-OH)(GL2)3](ClO4)2 (5–8) with tridentate NNO Schiff base ligands GL1− and GL2− derived from 5-G-substituted salicylaldehydes (G = NO2, Br, H, Me) and the diamines 1,2-ethanediamine and 1,3-propanediamine, respectively, were investigated aiming at shedding light on possible magneto-structural correlation in this class of complexes. All derivatives contain [Cu3(μ3-OH)(L)3]2+ cations with partial cubane Cu3O4 cores, and the metal ions are linked together in a pyramidal fashion by a triple-bridging hydroxido group, giving rise to propellers with three [Cu(L)]+ blades. In these spin-frustrated magnetic systems, the three copper(II) ions within a cluster communicate anti-ferromagnetically (−2JŜi·Ŝj convention) through the bridging OH group with coupling constants J ranging from −4.5(1) for 4 (G = Me) to −10.1(1) cm−1 for 1 (G = NO2), and stabilization of the doublet S = 1/2 ground state. The structural features of the complexes reveal very minimal deviations upon variation of G or the diamine flexibility along the whole series of compounds, preserving almost constant magnetic cores. Similar conclusions are also drawn by DFT gas-phase geometry optimizations of the [Cu3(μ3-OH)(L)3]2+ cations. Therefore, confident of excluding structural influences on the magnetic super-exchange path, the modulating factor of J in our derivatives can be sought after the different electronic demand of G. Atomic NBO charges support this point, revealing small but systematic variations in the electron density flow along the blades and the positive charge on copper(II) ions with the electronic nature of G, with the most remarkable effect given by the nitro group. Topological analysis of electron density according to the Quantum Theory of Atoms In Molecules further support the distinguishing role of this group with respect to the other substituents taken into consideration, besides providing indirect information about the super-exchange path.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.