Abstract

Experimental and theoretical investigations of coherent optical-frequency-domain reflectometry using semiconductor laser sources are presented. Good agreement was found between the analysis of the signal-to-noise ratio due to the phase noise and the experimental results. The sensitivity limit due to the quantum noise is also described. Limitations due to the nonlinearity in the optical frequency sweep produced by the thermal-response time of the laser and mode hopping are investigated and compared with experimental results. Two interferometric methods to characterize the thermal-response time of the laser and their implementations are described. The effects of mode hopping in the optical-frequency sweep are compared to numerical simulations. A simple formula to predict the position of spurious peaks due to mode hopping are presented. A spatial resolution of 400 /spl mu/m over 10 cm was obtained by correcting the nonlinearity in the optical-frequency sweep by using an auxiliary interferometer. The Rayleigh backscattering was observed for the first time over more than 400 m of fiber using a DFB laser coupled to an external cavity.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.