Abstract

Nonlinear flexural vibrations of rectangular atomic force microscope cantilever have been investigated by both the theoretical model and experimental works. As for the theoretical model, the Timoshenko beam theory which takes the rotatory inertia and shear deformation effects into consideration has been adopted. To increase the accuracy of the theoretical model, all necessary details for cantilever and sample surface have been taken into account. Differential quadrature method as a simple and fast numerical method has been used for solving the differential equations. During the investigation, the softening behavior was observed for all cases. It was also seen that raising the amplitude of vibrations led to a decrease in the nonlinear resonant frequency to linear resonant frequency ratio. The effects of different parameters such as normal and lateral contact stiffness, cantilever thickness, the angle between cantilever and sample surface and tip height in the presence of air as environment on the softening behavior were also examined. It was also demonstrated that increasing the lateral and normal contact stiffness, but decreasing the Timoshenko beam parameter would lead to an increase in the amplitude of vibrations for the first and second modes. The vibrational behavior of cantilever immersed in different liquids including water, methanol, acetone and carbon tetrachloride has been studied. Results show that increasing the liquid density reduces the nonlinear frequency. Furthermore, experimental works were compared with theoretical model for water and air environments. Results show good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call