Abstract

A new bistable shell with two symmetric configurations is proposed by using the nanotechnology, surface mechanical attrition treatment (SMAT), to locally treat a rectangular region. The impacts from randomly fast moving balls during the process induce nanotwins and mesh material grains into nanoscale on originally flat plates, which largely increase the material’s yield strength and elastic deformation capacity. Also, the plastic deformations accumulated from thousands of impacts may stretch the plate under the constraint from the untreated region, while inducing internal compressive forces in the processed region. The experiments show that, when the accumulated plastic deformations are large enough, the locally nanostructured plate may buckle transversely by the internal forces to hold two different stable configurations, resulting in the bistable feature. An analytical model is developed to predict the stable configurations, which is numerically verified and experimentally validated. The parameters, including the SMAT region, plate dimensions, and SMAT process, to design the stable configurations of the bistable shells are systematically studied experimentally, analytically, and numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call