Abstract

AbstractThe IR‐ and Raman spectra of copper phthalocyanine (CuPc), as well as the isotopic wavenumber shifts upon 15N substitution in CuPc, were investigated experimentally and theoretically. The symmetry of molecular vibrations was determined using polarized Raman spectra of an oriented CuPc single crystal. Density functional theory (DFT) calculations were used for the detailed assignment of different bands in the vibrational spectra of CuPc. Theoretically predicted geometry, wavenumbers and isotopic shifts are in a very good agreement with the experimental values. A comparison of experimentally obtained isotopic shifts with theoretical predictions allowed us to reveal some characteristic features of normal vibrations of CuPc molecule. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.