Abstract

The structural, magnetic, and optical properties of a new oxyphosphate, Ni0.25Mn0.25TiOPO4, have been investigated by X-ray diffraction (XRD) analysis, magnetic FC-ZFC measurements, and vibrational spectroscopy (Raman, IR, WDS, and UV/visible). XRD analysis showed that the compound crystallizes in a monoclinic structure, space group P21/c, with unit cell parameters of a = 7.3758(2) Å, b = 7.3255(2) Å, c = 7.3448(2) Å, and β = 120.25(2)°. Elemental analysis of the powder confirmed the presence of Ni, Mn, Ti, and P therein. Raman and IR spectra show strong bands at 749 and 787 cm−1, respectively, attributable to the vibration of –Ti–O–Ti–O– bonds in infinite chains. Magnetic studies have been performed in the temperature range from 2 to 300 K. The results revealed a weak antiferromagnetic coupling between spins in Ni0.25Mn0.25TiOPO4. The band-gap energy was estimated as Eg = 1.99 eV based on UV/Vis spectrophotometry. To better understand the experimental data, density functional theory (DFT) computations were performed within the generalized gradient approximation (GGA) and GGA + U. The partial density of states (PDOS) shows strong hybridization between O 2p, Mn 3d, and Ni 3d in the valence band and between Mn 3d, Ni 3d, and Ti 3d in the conduction band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.