Abstract

Defect engineering is an effective way to modulate the intrinsic physicochemical properties of materials. In this work, δ-MnO2 with oxygen vacancies is fabricated by a simple oxidation or reduction process, and the relationship between the electronic structure and pseudocapacitance is systematically studied through experimental analysis and theoretical calculations. The peaks in the Raman spectra of the as-prepared samples are shifted compared with those of pure MnO2 and the Mn3+ /Mn4+ ratio and O species content also change after the introduction of oxygen vacancies. The optimized samples exhibit a better specific capacitance of 207 F g-1 after the oxidation process and 181.4 F g-1 after the reduction treatment compared with only 143.9 F g-1 for the pure MnO2 . The samples obtained through the oxidation or reduction process also retain 93.3 or 86.4 % of the initial capacity after 5000 cycles. The excellent properties are attributed to the enhanced conductivity and increased surface reactivity or electrochemically active sites. Theoretical calculations demonstrate that the presence of oxygen vacancies leads to an increase in the density of states, which improves the redox reaction of MnO2 . This study will provide a reference for exploring and designing highperformance pseudocapacitive materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.