Abstract

We present a combined experimental and theoretical study of the structures and bench stability of halogen-bonded cocrystals involving the volatile halogen bond donor octafluoro-1,4-diiodobutane, with phenazine and acridine as acceptors. Cocrystallization experiments using mechanochemistry and solution crystallization revealed three chemically and structurally distinct cocrystals. Whereas only one cocrystal form has been observed with acridine, cocrystallization with phenazine led to two stoichiometrically different cocrystals, in which phenazine employs either one or two nitrogen atoms per molecule as halogen bond acceptor sites. Cocrystal stability was evaluated experimentally by simultaneous thermogravimetric analysis and differential thermal analysis or differential scanning calorimetry, real-time powder X-ray diffraction monitoring of cocrystals upon storage in open air, and theoretically by using dispersion-corrected periodic density functional theory. The use of real-time powder X-ray diffraction en...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call